CAUTION: USA law restricts this device to sale by or on the order of physician.

The Talon Spinal System consists of longitudinal rods, monoaxial screws, polyaxial screws, and transverse connectors. It is manufactured from Ti-6Al-4V alloy conforming to ASTM F136.

INDICATIONS

The Talon Spinal System is intended to provide immobilization and stabilization of the spine indefinitely and will fail in any of several modes. These modes may include fatigue failure, fracture, dislocation, scoliosis, kyphosis, spinal tumor, and failed previous fusion (pseudarthrosis).

POSTOPERATIVE MOBILIZATION

Until X-rays confirm the maturation of the fusion mass, external immobilization (such as bracing or casting) is recommended. Instructions to the patient to reduce stress on the implants are an equally important part of the attempt to avoid the occurrence of clinical problems that may accompany fixation failure.

CONTRAINDICATIONS

Disease conditions that have been shown to be safely and predictably managed without the use of internal fixation devices are relative contraindications to the use of these devices. Active systemic infection or infection localized to the site of the proposed implantation are contraindications to implantation. Severe osteoporosis is a relative contraindication because it may prevent adequate fixation. Spinal anchors and thus preclude the use of this or any other spinal instrumentation system. Any entity or condition that totally precludes the possibility of fusion, i.e., cadaver, kidney dialysis, or osteopenia is a relative contraindication. Other relative contraindications include obesity, certain degenerative diseases, and foreign body sensitivity. In addition, the patient’s occupation or activity level or mental capacity may be relative contraindications to this surgery. Specifically, patients who because of their occupation or lifestyle, or because of conditions such as mental illness, alcoholism, or drug abuse, may place undue stresses on the implant during bony healing and may be at higher risk for implant failure. See also the WARNINGS, PRECAUTIONS AND POSSIBLE ADVERSE EFFECTS CONCERNING TEMPORARY METALLIC INTERNAL FIXATION DEVICES section of this insert.

WARNINGS, PRECAUTIONS, AND POSSIBLE ADVERSE EFFECTS

Concerning Temporary Metallic Internal Fixation Devices

Following are specific warnings, precautions, and possible adverse effects that should be understood by the surgeon and explained to the patient. These warnings do not include all adverse effects that can occur with surgery in general, but are important considerations particular to metallic internal fixation devices. General surgical risks should be explained to the patient prior to surgery.

WARNINGS

1. Correct Selection of the Implant is Extremely Important

The potential for satisfactory fixation is increased by the selection of the proper size, shape, and design of the implant. While a proper selection can help minimize risks, the size and shape of the implant is critical. The selection of the proper size, shape, and strength of the implant is crucial. Metallurgical internal fixation devices cannot withstand activity levels equal to those placed on normal healthy bone. No implant can be expected to withstand indefinitely the unsupported stress of full weight bearing.
2. **IMPLANTS CAN BREAK WHEN SUBJECTED TO THE INCREASED LOADING ASSOCIATED WITH DELAYED UNION OR NONUNION.**

Internal fixation appliances are load-sharing devices which are used to obtain alignment until normal healing occurs. If healing is delayed or does not occur, the implant may eventually fail due to metal fatigue. The degree or success of union, loads produced by weight bearing, and activity levels will, among other conditions, dictate the longevity of the implant. Notches, scratches or bending of the implant during the course of surgery may also contribute to early failure. Patients should be fully informed of the risks of implant failure.

3. **MIXING METALS CAN CAUSE CORROSION.** There are many forms of corrosion damage and several of these occur on metals surgically implanted in humans. General or uniform corrosion is present on all implanted metals and alloys. The rate of corrosive attack on a metal implant device is usually very low due to the presence of passive surface films. Dissimilar metals in contact, such as titanium and stainless steel, accelerates the corrosion process of stainless steel and more rapid attack occurs. The presence of corrosion often accelerates fatigue fracture of implants. The amount of metal compounds released into the body system will also increase. Internal fixation devices, such as rods, hooks, etc., which come into contact with other metal objects, must be made from like or compatible metals.

ALL INSTRUMENTS SHOULD BE VISUALLY INSPECTED for wear prior to use.

4. **PATIENT SELECTION.** In selecting patients for internal fixation devices, the following factors can be of extreme importance to the eventual success of the procedure:

A. **The patient’s weight.** An overweight or obese patient can produce loads on the device that can lead to failure of the appliance and the operation.

B. **The patient’s occupation or activity.** If the patient is involved in an occupation or activity that includes heavy lifting, muscle strain, twisting, repetitive bending, stooping, running, substantial walking, or manual labor, he/she should not return to these activities until the bone is fully healed. Even with full healing, the patient may not be able to return to these activities successfully.

C. **A condition of sensitivity, mental illness, alcoholism, or drug abuse.** These conditions, among others, may cause the patient to ignore certain necessary limitations and precautions in the use of the appliance, leading to implant failure or other complications.

D. **Certain degenerative diseases.** In some cases, the progression of degenerative disease may be so advanced at the time of implantation that it may substantially decrease the expected useful life of the appliance. For such cases, orthopaedic devices can only be considered a delaying technique or temporary remedy.

E. **Foreign body sensitivity.** The surgeon is advised that no preoperative test can completely exclude the possibility of sensitivity or allergic reaction. Patients can develop sensitivity or allergy after implants have been in the body for a period of time.

F. **Smoking.** Patients who smoke have been observed to experience higher rates of pseudarthrosis following surgical procedures where bone graft is used. Additionally, smoking has been shown to cause diffuse degeneration of intervertebral discs. Progressive degeneration of adjacent segments caused by smoking can lead to late clinical failure (recurring pain) even after successful fusion and initial clinical improvement.

PRECAUTIONS

1. **SURGICAL IMPLANTS MUST NEVER BE REUSED.** An explanted metal implant should never be reimplanted. Even though the device appears undamaged, it may have small defects and internal stress patterns which may lead to early breakage.

2. **CORRECT HANDLING OF THE IMPLANT IS EXTREMELY IMPORTANT.** Contouring of metal implants should only be done with proper equipment. The operating surgeon should avoid any notching, scratching or reverse bending of the devices when contouring. Alterations will produce defects in surface finish and internal stresses which may become the focal point for eventual breakage of the implant. Bending of screws will significantly decrease the fatigue life and may cause failure.

3. **CONSIDERATIONS FOR REMOVAL OF THE IMPLANT AFTER HEALING.** If the device is not removed after the completion of its intended use, any of the following complications may occur: (1) Corrosion, with localized tissue reaction or pain; (2) Migration of implant position resulting in injury; (3) Risk of additional injury from postoperative trauma; (4) Bending, loosening, and/or breakage, which could make removal impractical or difficult; (5) Pain, discomfort, or abnormal sensations due to the presence of the device; (6) Possible increased risk of infection; and (7) Bone loss due to stress shielding. The surgeon should carefully weigh the risks versus benefits when deciding whether to remove the implant. Implant removal should be followed by adequate postoperative management to avoid refracture. If the patient is older and has a low activity level, the patient may choose not to remove the implant thus eliminating the risks involved with a second surgery.

4. **ADEQUATELY INSTRUCT THE PATIENT.** Postoperative care and the patient’s ability and willingness to follow instructions are among the most important aspects of successful bone healing. The patient must be made aware of the limitations of the implant, and instructed to limit and restrict physical activities, especially lifting and twisting motions and any type of sports participation. The patient should understand that a metallic implant is not as strong as normal healthy bone and could loosen, bend and/or break if excessive demands are placed on it, especially in the absence of complete bone healing. Implants displaced or damaged by improper activities may migrate and damage the nerves or blood vessels. An active, debilitated, or demented patient who cannot properly use weight-supporting devices may be particularly at risk during postoperative rehabilitation.

POSSIBLE ADVERSE EFFECTS

1. Bending or fracture of implant.
2. Loosening of the implant.
3. Metal sensitivity, or allergic reaction to a foreign body.
4. Infection, early or late.
5. Nonunion, delayed union.
6. Decrease in bone density due to stress shielding.
7. Pain, discomfort, or abnormal sensations due to the presence of the device.
8. Nerve damage due to surgical trauma or presence of the device.
11. Dural tears experienced during surgery could result in the need for further surgery for dural repair, a chronic CSF leak or fistula, and possible meningitis.
12. Death.
13. Vascular damage due to surgical trauma or presence of the device. Vascular damage could result in catastrophic or fatal bleeding.
14. Screw back out, possibly leading to implant loosening, and/or reoperation for device removal.
15. Damage to lymphatic vessels and/or lymphatic fluid exudation.
16. Spinal cord impingement or damage.
17. Fracture of bony structures.
18. Degenerative changes or instability in segments adjacent to fused vertebral levels.